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Preview-Based Stable-Inversion for Output Tracking
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Stable Inversion techniques can be used to achieve high-accuracy output tracking.

However, for nonminimum phase systems, the inverse is noncausal - hence the inverse

has to be precomputed using a pre-specified desired-output trajectory. This requirement

for pre-specification of the desired output restricts the use of inversion-based approaches

to trajectory planning problems (for non_minimum phase systems). In the present article,

it is shown that preview information of the desired output can be used to achieve online

inversion-based output tracking of linear systems. The amount of preview-time needed is

quantified in terms of the tracking error and the internal dynamics of the system (zeros

of the system). The methodology is applied to the online output tracking of a flexible

structure and experimental results are presented.

*Graduate Student, Mechanical Engineering Department, University of Utah, SLC, UT, 84112.

Email: qingze@eng.utah.edu

tAssistant Professor, Mechanical Engineering Department, University of Utah, SLC, UT, 84112.

Email: santosh_eng.utah.edu

V



1 Introduction

Inversion of system dynamics can be used to find inputs which achieve exact output-tracking

[10, 22]. For systems with nonminimum phase dynamics, inputs found through standard inver-

sion techniques tend to be unbounded and therefore, cannot to be used for practical output-

tracking. Recently, stable inversion approaches [5, 11, 1] have been developed for nonminimum

phase systems, which yield bounded inputs for exact output-tracking. The application of such

inversion-based output tracking has been studied for several nonminimum systems, like flexible

manipulators [20, 16], aircraft systems [18, 24, 4], and high precision positioning of piezo-probes

for nano-technology [2]. A critical difficulty with these inversion-based approaches is that the

inverse is noncausal (for non-minimum phase systems) and therefore the desired output tra-

jectory must be pre-specified. This requirement for pre-specification of the output-trajectory

can be a substantial limitation on the use of the non-causal inversion-based approach, and it

limits the inversion-based approach to trajectory planning applications. The main contribution

of this paper is to show that, for linear systems, the noncausal inverse can be computed using

a preview-based approach, which allows the inversion process to be applied online. This article

also quantifies the amount of preview-time needed in terms of the desired tracking accuracy

and the location of the zeros of the system. Implementation issues are discussed and the ap-

proach is experimentally verified by applying it to the output tracking of a flexible structure

with nonminimum phase dynamics.

A major result in output tracking is the solution of the output regulation problem for

linear systems by Francis [9]. These results were generalized for the nonlinear case by Isidori

and Byrnes [13]. The desired outputs are assumed to be generated by an exosystem and the

linear regulator is easily designed by solving a manageable set of linear equations. A problem,

however, with the regulator approach is that the exosystem states are often switched to describe
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the desired output; this leads to transient tracking errors after the switching instants. Such

switching-caused transient errors can be avoided by using inversion-based approaches to output

tracking [5, 7]. Thus, it is advantageous to use inversion-based output tracking when exact-

tracking of a particular output trajectory is required. In the inversion based approach, the

system dynamics [10, 22] is inverted to find the input that exactly tracks a single specified output

trajectory (rather than track a class of outputs as in the case of the output-regulator). Inversion

for nonminimum phase systems is challenging since the standard approaches lead to unbounded

inputs [10]. Stable inversion techniques resolve this problem of unbounded inverse-inputs by

finding bounded (but possibly noncausal) exact-tracking input-state trajectories [5, 11]. The

noncausality of the inverse implies that the entire output trajectory needs to be known ahead

of time which restricts the use of inversion-based approaches (for nonminimum phase systems).

This motivates the current work, which shows that the noncausal inverse can be found by

using preview information and thereby enables the online implementation of the inversion-

based output tracking technique for nonminimum phase systems.

Other approaches have also used preview information of the desired output trajectory for

output tracking, for example, to alleviate the problems due to nonminimum phase dynamics

by exploiting actuator redundancy [25]. Another use of previewed information of the output

is in linear quadratic-based (lq-based) optimal output tracking controllers (see [17], Chapter

4). Tomizuka and coworkers (e.g., [23]) have shown that the performance of finite-time-preview

controllers approach the performance of the infinite-preview controller as the amount of preview

time increases. In these works, the goal is to trade-off the tracking requirement to reduce the

magnitude of the inputs. In contrast, inversion based approaches aim to achieve high accuracy

control of the desired output trajectory. Trading off the accuracy output-tracking requirement

to achieve other goals like vibration minimization is also possible within the inversion-based

framework (see [8]). The resulting inverse controller is noncausal, which can also be imple-
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mented using the preview-based controller discussed in the current article.

The paper is organized in the following format. The inversion-based output tracking scheme

and its dependence on the solution of the system's internal dynamics is presented in Section

2. The inversion problem is then solved using preview information of the output, and imple -

mentation issues are studied in Section 3. In section 4, the preview-based inversion approach

is applied to the output tracking control of a flexible structure and experimental results are

presented. Discussions are in section 5 and our conclusions are in Section 6.

I

2 Stable Inversion for Nonminimum Phase Systems

In this Section, the inversion-based output tracking approach is presented. It is shown that

solving the inversion problem is equivalent to finding bounded solutions to the systems's internal

dynamics.

2.1 Output tracking using inversion of system dynamics

Consider a linear system described by

it(t) = A z(t) + B u(t)

y(t) = C x(t) (1)

which has the same number of inputs as outputs, u(t),y(t) C _P, and x(t) E _n We assume

that the system is stabilizable. Let Yd(') be the desired output trajectory to be tracked. Then

in the inversion-based approach we, first, find a nominal input-state trajectory, [u:/(-), xre:(')]

that satisfies the system equations (1) and yields the desired output exactly, i.e.,

2_e:(t) = A xr_:(t) + B u::(t) _ Vt E (2)
yd(t) = C x_l(t ) J
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and, second, we stabilize the exact-output yielding state trajectory, xr_/(.), by using state feed-

back (see Figure 1). Thus x(t) ---* xrel(t) and y(t) ---, yd(t) as t --_ oc and output tracking is

achieved. While stabilization of the reference state trajectory can be easily achieved through

standard techniques [14] like state feedback of the form K[x(t) - xrel(t)], the main challenge is

to find the inverse input-state trajectory lull(-), xr_:(.)] - especially for systems with nonmini-

mum phase dynamics. This paper addresses the on-line computation of the inverse input-state

trajectory using preview information of the desired trajectory, Ya.

%J
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Figure 1. The output tracking control scheme.

2.2 Stable inversion scheme

V

In this subsection, it is shown that finding the inverse input-state trajectory is equivalent to

finding bounded solutions to the system's internal dynamics. Let the linear system (1) have

a well defined vector relative degree, r := [rl, r_, ..., rp]. Then the output's derivatives are

given as:

d"_Y---_k= CkA"_x + CkA"k-lBu (3)
dt_k
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where Ck is the k th row of C, and 1 < k < p. In vector notation let equation (3) be rewritten

as

y(r)(t) = Axx(t) + B_u(t) (4)

g

where

y(r) := [ drlyl, d _2y2 drPyp ] T
I I Q

Jdt_l dt_2 dtrp

n x :=

C1 Ar_

C2A _2

CpA_p

By :-_-

CI A_I-I B

C2Ar_-IB

CpA _p- IB

and B_ is invertible because of the well-defined relative degree assumption. Equation (4) mo-

tivates the choice of the control law of the form

uil(t ) = B_ 1 [yd(_)(t)- Axx(t)] (5)

for all t E (-c_, c_). Substituting this control law in equation (4), it is seen that exact tracking

is maintained, i.e.,

=

To study the effect of this control law consider a change of coordinates T such that

_(t) =Tx(t)

where _¢(t) consists of the output and its time-derivatives

._r2- 1.. d_- 1ypdn - lyl _ y2 .
_(t):= [Yl,Yl,..., dt_,_l 'Y2'_]2"'" dt_2_ 1 ,...,yp, yp,..., ]'' dtrp-1 _ "

(6)
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The system equation (1) can then be re-written in the new-coordinates as

_(t) = AI_ + A2n + B,_ (7)

9(t) = A3¢ + A_n + _2_ (8)

where

,4 := TAT -I := ; and /3 := = TB

In the new coordinates, the control law for maintaining exact tracking (Equation (5)) can be

written as

u1i(t ) = B_ -1 [yd(*)(t)- A_d(t)- A,_7(t)] (9)

where

:= A.T -1.

Note that the desired _(.) is known when the desired output trajectory Ya(') and the output's

time derivatives are specified. This desired ((.) is defined as _a('). Since the control law was

chosen such that exact tracking is maintained, y(r)(t) = y(r)(t) we also have _(t) = _u(t), and

Equations (7) and (8) become

%2
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where

_(t)

n(t)

= _.(t)

= A3G(t) + A4_(t) + .B2B_' [ya(*)(t)- A¢¢a(t)- A,_r/(t)].

:= AT n(t) + B, Y.(t)

:= A4- [32B;1A, ; B, := [[32B; 1 Az- 132B;'A¢] ; and Ya := y_(t) 1(_(t)

(10)

(11)

(12)
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This is the inverse system, and in particular, Equation (11) represents the internal dynamics.

If a bounded solution, r/d('), to the internal dynamics (11) can be found then the exact-tracking

feedforward input can be found through equation (9) as

ufl(t ) = B_ 1 [yd(_)(t)- A_a(t)- A,Tr/,_(t)]

and the reference state trajectory can be found as

(13)

(14)

Thus a bounded solution to the internal dynamics (11) is required to find the inverse for applying

the output tracking scheme shown in Figure 1.

2.3 Bounded solutions to the internal dynamics

We restrict the following discussion to systems with hyperbolic internal dynamics, i.e., none of

the zeros of the system (Equation 1) lies on the imaginary axis of the complex plane (a technique

to address the nonhyperbolic case can be found in [4]). If the internal dynamics is hyperbolic,

there exists a transformation U such that the internal dynamics (11) can be decoupled into a

stable subsystem (as) and an unstable subsystem (a_):

where

as(t) = A,¢,(t) + Ssv_(t)

d_,(t) = ._,,o'u(t) + /3_Ya(t)

_(t) :=

(15)

(16)

= ur/(t) (17)

Bounded solution to the internal dynamics in the transformed coordinates can then be found

as
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a_(t) = e2"(t-*)[_Ya(T)dT (18)

OO

j(t °c9
tru(t ) = - e']_(_-t)[_uya(T)dr

In the new coordinates, the feedforward control law in Equation (13) can be written as:

(19)

ulI(t ) = B; 1 [y_(t)- A_(t)- A,U_a_(t) - A,U_a_(t)] (20)

where U -1 := [U_ _r_] is partitioned according to the partition of cr in Equation (17).

This completes the inversion technique. To summerize: the bounded solutions found through

Equations (18) and (19) are used to find a bounded solution to the internal dynamics, _Ta, by

using Equation (17). The inversion is then completed by finding the reference state and input

trajectories by using Equations (14) and (20)i Which are then used in the control scheme shown

in Fig. 1 to obtain output tracking. Note that only the past information is needed to compute

the solution to the stable subsystem of the internal dynamics by using Equation (18). However,

to find a bounded solution to the unstable subsystem (a_) by using Equation (19), the desired

output must be completely specified (including future information). This is the main problem,

which restricts the use of inversion to trajectory planning (where it may be acceptable to solve

Equation (19) off-line).

V

3 Preview Based Inversion

In this section, we discuss the online computation and implementation of the inverse using

preview-information of the desired output trajectory, which enables the tracking of output

trajectories that are specified on-line. We begin by quantifying the relationship between the

preview-time and tracking error.
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Let the desired output, Yd (and its time-derivatives) be given for a preview-time of Tp

seconds, i.e., at time t, ]fd(7) (defined in Equation (12)) is known for all t _< 7- < t + Tp. This

preview information is used to approximate the solution to the internal dynamics (in particular,

to approximate the bounded solution to the unstable subsystem, _r_, given by Equation 19).

The approximated solution, #_ is found as

t÷ Tp(r,,(t) e -A"(T-*) B.Yd(T)dT (21)
--,It

Let the error between the exact-solution to the unstable subsystem found through Equation

(19) and the approximated-solution found through Equation (21) be defined as:

eo. = a_(t) - #_(t) (22).

We show in the following Lemma that e.. (t) can be made arbitrarily small by having a large

enough preview time. Furthermore, we show that the error in computation of the inverse input

by using the finite preview also converges to zero as the preview time, Tp, increases. The error

in computing the inverse-input, eu(t), is defined as

eu(t) = ¢_Ii(t) - uH(t) (23)

where Ull(t ) denotes the input obtained with infinite preview using Equation (20) , and _2ff(t)

denotes the preview input obtained with finite preview when au is replaced by the approximate

solution 5r, in Equation (20)

_If(t) := S_-: lYe(t)- A_d(t)- AnOsas(t)- An6r,,#,(t)] • (24)

This implies that, as the preview time increases, the approximated input trajectory approaches

(arbitrarily closely) the exact output-tracking inverse trajectory.

Lemma 1 Let the desired trajectory and its derivatives be bounded, i.e. there exists a positive

scalar M 6 R, such that [lYd(t)[12 <_ M for all time t. Then for any scalar c > O, there

g

g
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exists a finite time T_ such that the error (in computing the inverse input by using the preview

information of the output)can be made smaller than e if the preview time is larger than T_, i.e.,

Ile_,(t)ll2 _< e. In the above notation, Ilzl]2 is defined as the standard Euclidean norm for any

vector z.

Proof: Since the subsystem (16) is unstable, -A_ is Hurwitz, and therefore positive scalars a

and _ can be chosen such that [3]

Ile-_-'ll: < _--' v t> o (25)

where, given a matrix F E IR"x", ]]FII_ denotes the induced matrix norm, defined as

HFH2 := sup IIFxll2. From the definition of e_. in Equation (22)
Ilzl12=l

Ile_o(t)ll_ = II_.(t)-a.(t)ll2

/io= II e-_"'-')[_V.(r) grit2
Tp

f;-< Ile-a"('-')ll2 IIB=Y.(r)ll2ar
Tp

<

(using Equations (19) and (21))

K1 Ile-_(_-')l12d_- (with K1 := MIIB.II= )
n

<_ K1----_e-_n (using Equation (25)) (26)
a

From the definition of the computational-error in finding the inverse-input (Equation (23)) and

from Equations (20), (22) and (24), we have:

supIle_,(t)ll=
t

< sup IIB_-Xll=IIA.II=IIGII=Ile._(t)ll=
t

:= supK2 Ile_.(t)ll= (/(2 :-= IIB_-_ll=IIA,I1=11_7_112)
t

<_ ]('e -aTp, (using inequality (26) and K: := KxK_)
O_ (27)

10
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For any given e > 0, choosing

In
T; > _ (28)

O_

and substituting any Tp > T_ in Equation (27) completes the proof. O

It is noted that for proving this lemma, it is sufficient for [[/_,Yd(')[[2 to be bounded, which can

be less restrictive than requiring []Yd(')[[2 to be bounded. Using similar arguments, it is also

possible to show that the error in computing the inverse reference-state-trajectory, x_ef, can be

made arbitrarily small by having sufficiently large preview time.

The next lemma shows that the error in output-tracking, due to errors in computing the

inverse, can also be made small by choosing a sufficiently large preview time (for a similar

argument, see [6])

B

W

Lemma 2 Let the original system (1) be stable (or stabilized with feedback before the inversion

is applied). Then the tracking error, on applying the finite-preview-based input (_zff) as a

feedforward input, can be made arbitrarily small by choosing a large enough preview time.

Proof: From Eq. (1), the dynamics of the state-error ex(t) := x(t) - x_ef(t), where x(t) is the

system-state when the finite preview input _If(t) is applied to system (1), can be described by

ex(t) = A ex(t) + B e,(t) (29)

The error in output-tracking ev(t) := y(t) - yd(t) = C ex(t) can then be bounded as

Ile_(t)ll2 = IICe=(t)ll2 _ [IC[l_Ile=(t)ll2

< IlCll2 IleA(t-'_ll2IIBll_Ite_(_)ll2dr (using solution of Equation (29))
OO

_< IICII2118112(sup Ile,,(T)ll_) IleA(t-_)ll2dr (30)
T --OO

If the original system(Equation(I) is stable (or if the inversion is carried out after stabilizing the

system), then there exit real positive numbers M1 and Z such that [[eA(t-r)[[ 2 _< M1 e -_(t-¢).

11
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Substituting this in Equation (30) yields

t_< ]lCll2 ILBII_(sup II_(_)h) M, _-_(*-_)d_
T Oo

M2 (--_)__(sup Ile_(r)ll_) ( with M2

M1M2t: e_,_Tp (using inequality (27))
-< aZ

IICIl_llBIl_)

(31)

The tracking error, Ile_(t)][2, can be kept smaller than emaz for all time, t, by choosing the

preview time, Tp, as
In

0:_ erna_

T, >_ T; >_ (32)
C_

which completes the proof []

Remark: The preview time Tp needed to achieve a desired accuracy in output tracking depends

on the distance of the right half plane zeros of the system (Equation (1)) from the imaginary

axis of the complex plane. As this distance, increases, c_ in Equation (32) can be chosen larger

(defined in Equation (25)) and therefore, a smaller preview-time can be chosen to achieve the

desired accuracy in output-tracking.

r
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4 Example: Flexible Structure Control

The experimental flexible structure considered here consists of two discs which are connected

by a thin freely rotating shaft as shown in Figure (2). The system input, U(t), is the voltage

(Volts) applied to a DC motor, and the output, 02, is the angular rotation (in degrees) of the

disc which is farther from the motor. The system equations (obtained experimentally with a

HP3562A Dynamic Signal Analyzer) can be written in the following state-space form where the

state vector, x is chosen as

12
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0 I 0 0

-3.656 -0.436 3.573 -0.091

0 0 0 l

3.245 -0.126 -3.259 -0.076

x+

0

21.9027

0

3.588

u (33) t

Y

:= Ax+Bu

:= 62 =[0010]x

°4

Figure 2. The experimental flexible structure.

(34)

4.1 System inverse

The relative degree of the above system is two and hence the output has to be differentiated twice

to relate the input and the output (as described in Section (2.2) with _ := [y, _)1T = I_2, /_21T).

Note that 4 is known when preview information of the desired output and its derivatives are

defined. The internal dynamics of the system are described by 77 := [/_1, _1]T. The inverse input

ulI can be written as (using Equation (1"3) and the last row of Equation (33))

1

uH(t) = 3.58--'-8{gd(t), [3.245 - 0.126] r](t) - [-3.259 - 0.076] _d(t) } (35)

and the internal dynamics is given by substituting this control law into the first two rows of

Equation (33)
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0

-23.4658

:= A,_+B,Y_

0.3306

0 0 0

23.4658 0.3753 6.1041
Yd (36)

where, Yu = [yu _la _)d] T and the entire internal dynamics is unstable, i.e., e, = 77 .

(37)

4.2 _d generation

There are several methods available to generate the desired trajectory ya and its time derivatives.

One method is to predict the future Yd by using polynomial extrapolations of the past desired

trajectory signals [19] and then differentiating these polynomials. Another approach is to use a

command generator [23] and then switching its states to generate online changes of the desired

trajectory. For our experimental system, we assumed that the future desired trajectory y_

could be obtained for the preview time Tp (a potentiometer was adjusted to define the desired

output). Note that to compute the inversion-based control, the output's time derivatives must

also be specified. Although these derivatives, Yd, #d, could be found by direct differentiation, we

avoided noise problems associated with direct differentiation by using a biquad filter [12] shown

in Figure 3. This filter was chosen with a cut-off frequency of 1 Hz to match the modelled

bandwidth of the flexible structure - only the first two modes of the flexible structure were

modeled and the higher-frequency dynamics are not represented by Equation (33) - see [8] for

details of the flexible structure modeling.
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Command Signal

from user __

r

Yd _
>j_---_ Y_

g

g

Figure 3. On-line generation of the desired trajectory and its time derivatives [12].

4.3 Online implementation of preview-Based inversion

The preview-based solution to the unstable subsystem of the internal dynamics, i.e., the inte-

gral Equation (21), was computed online by discretization by using the fourth-order Simpson

formula [15]

ft+Tp5_,(t) = - e-a"('-t)[3,_Yn(r)d "r
Jt

h N

_ g _M(i) _'a(t, i)
i=O

(38)

where the sampling time is Ts such that N := Tp/Ts is an integer, Yu(t, i) = Ya(t + i • Ts)

and:

_(i) = {
-2 * e-a"(i*r°) [3.

-4 * e-A"(i*T°)J_u

if/ = 0

if i > 0 and i is even

if i is odd

(39)
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Note that the matrices .h4(i) can be precomputed and stored to reduce the online computa-

tions. This computation-scheme is shown in Figure 4. The computation-error, due to time-

discretization, can be reduced by choosing a small enough sampling time(Ts).

InternalDynamics _u(n)

_ 7_,ero-OrderSample I*

_[ Zero-Order Hold

Discrete Time Calculation

!

!

I

,' '_d(t+Tp)

Continuous Time Signal

Figure 4. The schematic of on-line calculation of the unstable part of internal dynamics.

V
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4.4 Experimental Results

Experimental results for output-tracking with two-different preview-time, Tp = 20 seconds and

T_ = 50 seconds, are shown in Figure 5, which illustrates the improvement in output-tracking

as preview-time increases. The experiments include feedback-stabilization, which was added

to account for unmodeled dynamics in the system (like friction in the experimental system

and static imbalance of the discs, which created a tendency in the discs to settle in a specific

orientation). It is noted that trajectories for the two cases are different in Figure 5 because

these desired output trajectories were generated on-line for the two different preview-time cases.

As shown in Figure 5, preview-based inversion improves tracking performance with increasing

preview time, and online specification of the output trajectory is possible.

16
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Figure 5. Experimental results. The solid line is the desired trajectory, the dashed line

represents the output trajectory. Plot (a) is for 20 seconds preview time, and plot (b) is for 50

seconds preview time.

5 Discussion

For nonminimum phase systems, recent stable inversion-based approaches can be used to achieve

high-accuracy output tracking. However, the entire desired output-trajectory has to be pre-

scribed for the off-line computation of the inverse - this is a significant limitation since the

17
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desired trajectory cannot be changed online. This limitation has been alleviated by the current

preview-based approach which allows the online implementation of the inversion-based output-

tracking controllers. The methodology allows the application of the inversion-based approach

to systems like flexible manipulators and servo-positioning systems where it is necessary to

change the desired trajectory. Such online-changes are allowed by the current technique if a

preview of the desired trajectory is possible. This requirement for preview information is not a

drawback of the current controller. Rather, this is necessary for high-accuracy output tracking

because there are performance limitations on output-tracking for nonminimum phase systems

if output-preview is not available [21]. An important result of the preview-based inversion ap-

proach is that the output-tracking error can be made arbitrarily small with sufficiently large

preview time. The quantification of the amount of preview time in terms of the location of

system-zeros in the imaginary plane(see section 3) can aid in the initial design of a system. In

particular, the preview time needed can be made smaller by choosing design-parameters such

that right-half plane zeros (if any) are far away from the imaginary axis of the complex plane.

In summary, the preview-based approach will help in the implementation of inversion-based

control laws for high-accuracy, on-line output-tracking of nonminimum phase systems.

6 Conclusion

We have developed and implemented preview-based output tracking using on-line inversion

for non-minimum phase systems. The preview time needed was quantified in terms of the

required accuracy in output tracking, and related to the system-zeros. Implementation issues

were discussed and the technique was verified by applying it to the output tracking of an

experimental flexible structure.
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